Activities to Teach Students to Divide 3-Digit Numbers by 1-Digit Numbers Using Area Models

Dividing 3-digit numbers by 1-digit numbers can be a challenging task for many students. However, introducing area models can make the process easier and more visual. Here are some activities to teach students how to divide 3-digit numbers by 1-digit numbers using area models.

1. Introduction to Area Models

Before introducing division using area models, it’s essential to understand what they are. Area models are a visual representation of multiplication or division problems using rectangles. Each rectangle represents a digit in the number, and the area of the rectangle represents the value of the digit. For example, a 3-digit number can be represented by three rectangles, with each representing a digit in the number.

2. Dividing Using Area Models

Once students understand the concept of area models, introduce division using area models. For example, dividing 276 by 3 can be represented by drawing three equal-sized rectangles and partitioning them into equal parts, representing each digit of 276. Students can then circle the partitioned sections in one rectangle to represent the quotient, which is 92. The remaining spaces in the rectangle represent the remainder, which is zero in this case.

3. Guided Practice

After giving a quick lesson on how to use area models for division, have the students practice in their groups using guided practice questions. For instance, divide 345 ÷ 5. The students should draw five equal-sized rectangles and partition them into equal parts, which represent each digit in 345. They then circle one section from each rectangle to represent the quotient, which is 69. The remaining spaces in the rectangle represent the remainder, which is zero.

4. Independent Practice

Following guided practice, give the students some independent practice problems, for example, dividing 793 ÷ 6 or 479 ÷ 4. With each problem, students should draw rectangles and partition them accordingly. Then, they can circle sections from each rectangle to represent the quotient.

5. Extension Activity

Once students have a grasp of dividing using area models, suggest an extension activity. As an example, have students use their knowledge of division with area models to solve real-world problems. For instance, if each slice of pizza costs $3, and there are 249 slices that must be divided equally among 7 people, how much will each person get? Students should represent each number using area models, divide using the model, and then convert the solution back into a real-world scenario.

Overall, using area models can help students conceptualize division, making it easier to understand and solve more complex problems. With some guided practice and independent practice, students will master dividing 3-digit numbers by 1-digit numbers and move on to solving more challenging word problems.

Choose your Reaction!